SN sl

BIRZEIT UNIVERSITY

Software Engineering - SWEN6304

Engineering and Technology DEPARTMENT

Software Architecture and Design

Design of Shopping Mall System using Design Patterns

Dr. Yousef A. Hassouneh

Made by:
Alaa’ Omar, 1185472@birzeit.edu.ps

Contents

1 Introduction

2 Project functional and nonfunctional Requirements
3 Project Source Code Structure and Hierarchy

4 Design Patterns Used
4.1 Abstract Factory e
4.2 Singleton Design Patterno
4.3 TIterator Design Pattern o
4.4 Observer Design Pattern
4.5 Composite Design Pattern Lo

Listings

Factory Design Pattern Sample Code
Singleton Design Pattern Sample Code
Iterator Design Pattern Createlerator Sample Code
Iterator Design Pattern Concrete implementation sample Code
Observer Design Pattern Sample Code
Composite Design Pattern Sample Code

S T W N =

List of Figures

Mall Store Project Modified Class diagram
Project Source Code Structure and Hierarchy
Abstract Factory Design Pattern Class Diagram
Tterator Design Pattern o o
Observer Design Pattern Class Diagram
Composite Design Pattern Class Diagram

Sy UL W N =

© 9 O ot © O Ot w W

O 00 O = N

<<Interface>>

Abstract Store

IStoreFactory <<Intarface>>
-CreateStore() ‘Store e ISubject

-hame -storeid

-Stores -items -registor0 bserver(Observor o)

-customers T -customers -removeQbservor(Qbservor o)
et Enter[] -------------- ;— T = -Observers -NotifyObservors{Observor o)

+axit() +enter()
igetShoppingCan(et

+getCustomers) +getCustomers()

+items()
T +addObserver()

|

|
<<|nterface>> 1 J’/
|0bserver :

A

BookStore ShoeStore

abstract class

ItemComponennt

-add)

-
=

-name k—
-Stores
+ShoppingCart()

i
|
|
|

% 1
|
I
|
\/

-getPrice

Comnposite ltem

<<Interfa . <<Interfa
Hom Compoltem

Iterator Aggregate

Concretelterator

-Creatiterator()

hashexti)
-nextf)

-memberName
-memberName

-storeid

-price

Figure 1: Mall Store Project Modified Class diagram

1 Introduction

This Project represents a redesign to the original Project class diagram, the new design is implemented
using design patterns, that provides the quality attribute ”design for change”, depending on object
oriented programming four principles (Abstraction, Encapsulation, Inheritance, Polymorphism), side
by side with the SOLID Design Principles. The Design Patterns used in this project are (Abstract
Factory Design Pattern,Singleton Design Pattern, Observer Design Pattern, Iterator Design Pattern,
Composite Design Pattern), the article contains detailed sections about each design pattern usage
in the project. In the section 2 lists the functional and non functional requirements for the project,
section 3 shows the source code structure and hierarchy, section 4 talks about each design pattern
used in the project in a separate subsection.

2 Project functional and nonfunctional Requirements

Nonfunctional Requirements:
e Design For Change
Functional Requirements:
e The Mall contains one or more stores.
e Many customers can enter the mall.
e Allow only one instance of any Store type created.
e Any Customer can enter any store.
e The customer must register for Items sale update for any store.
e The customer can unsubscribe for updates in any store.

e The customers observing any store should be notified automatically for updates.

3 Project Source Code Structure and Hierarchy

The Figure 2 illustrates The Source Code hierarchy, every design pattern source files are combined
together in a folder with the design pattern name, the first folder which is the default package has
the client code myMall.java, the CompositeDP holds the Comboltem.java wich is the concrete
class that repersents the composite item, the ItemComponent represents the abstract class for the
comboltem.java, and Comboltem.java, while the leaf item is in the SharedClasses package,
refer to figure 6. The package FactoryDP contains all items of the abstract factory design pattern,
strating from the interface IStoreFactory, ending with concrete classes (ShoeStore, GameStore,
BookStore), figure 2 illustrates the relations between the classes of abstract factory. ObserverDP
package contains the interfaces needed for the observer design pattern, while the concrete subject is
the concrete stores, and the concrete Observer is the customer class which is in the SharedClasses,
refer figure 5 for the complete structur. SharedClasses package contains class that are used in more
than one design pattern (item, customer), and other classes (mall, shopping cart).

4 Design Patterns Used

4.1 Abstract Factory

Abstract Factory Design Pattern which is of kind structural design pattern, has been used to create
new Stores, the abstract factory is used to create a family of products, in this project, I introduced
one line of products, which is Store, with three Concrete stores (concrete products) that inherits
the abstract stores, so this design pattern can be Considered as two in one design pattern,the figure
illustrates the use of this design in the project:

= [<default package>
=5 compositeDP
@ Comboltem java
@ ItemComponent.java
= EE FactoryDP

& BookStore java
BookStoreFactory.java
GameStore java
GameStoreFactory.java
IStoreFactoryjava
ShoeStore java
ShoeStoreFactoryjava
Store java
= B IteratorDP
Aggregate java

3 0 B 5 B B

Concretelterator java

i7l i

Iterator java

E-EQ

o

bserverDP
10bserver java

il

I5ubject java
=1 5 sharedClasses
Customer.java

Item .java
Mall java

B EE

ShoppinaCart.java

Figure 2: Project Source Code Structure and Hierarchy

-name
-storeid
-items
-customers
-Observers
+enter()
+eadt ()
+getCustamers()
-Hitems()
+add0 0
-memberName
Mtore
n

Figure 3: Abstract Factory Design Pattern Class Diagram

w W

Abstract Store represents an abstract line of products, it has three concrete classes (shoe-
Store, GameStore, BookStore), A new product of line can be added easily by adding a new
abstract line of product that has as many concrete classes as needed.

GameStor, ShoeStore, BookStore represents concrete classes that inherits from Abstract
Store.

IStoreFactory represents the interface for the Store factory in which each product of line must
be represented by a factory method.

GameFactory, BookFactory, ShoeFactory represent a concrete factories that implements
the IStoreFactory IStoreFactory and overrides the CreateFactory() method that returns
object of type Store, each of these concrete classes has a direct association with the concrete
Stores (GameStore, BookStore, ShoeStore). This dependency means that each concrete
factory is responsible for creating each corespondent concrete Stores.

The Idea of using Abstract factory is to decouple the client from knowing about the concrete classes
by providing an interface for creating family of related products, which is IStoreFactory in this
project. Using abstract factory provides the ease of adding new concrete classes, related to line of
product without bothering clients, which intern leads to maintainable systems that are designed for
change, Furthermore it is important to mention that some of the solid design principles are used in
this design pattern, Open-Closed Principle OCP, and Inversion Dependency Principle.

/*Create A new Game Storex/

GameStoreFactory gFactory = GameStoreFactory.getFactorylnstance();
Store gStore = gFactory.createStore();

Listing 1: Factory Design Pattern Sample Code

4.2 Singleton Design Pattern

Singleton Design Pattern which is categorized as creational design patterns, it is used to allow only
Creation of one instance of each Factory, and provides a global access to it. It Allows only one instance
of any factory type created.

1 private volatile static GameStoreFactory instance = null;

private GameStoreFactory() {}

public static GameStoreFactory getFactoryInstance() {

GameStoreFactory locallnstance = GameStoreFactory.instance;
if (locallnstance == null) {

synchronized (GameStoreFactory.class) {

locallnstance = GameStoreFactory.instance;
if (locallnstance == null) {
return new GameStoreFactory(); }
}
}

return locallnstance ;

Listing 2: Singleton Design Pattern Sample Code

<<|Interface>>

<<|nterface>>

Client Agdregate

lterator

hasMext()

-Creatlterator()

Concretelterator

abstract class
-memberhame N
ltemComponennt

-memberfame

| -add()
-remove()
-getChild()
-getMame
-getPrice

?

Leaf

Figure 4: Iterator Design Pattern

4.3 Iterator Design Pattern

The Iterator Pattern provides a way to access the elements of an aggregate object sequentially without
exposing its underlying representation. The Iterator interface is ready to use in Java JDK, under the
java.util library. All The enumeration Methods in this project are implemented using Iterator design
pattern. The next code will be directly imported from a file:

@Override
public IteratorDP.Iterator Createlterator() {

return new Concretelterator(itemComponents);

}

Listing 3: Iterator Design Pattern Createlerator Sample Code

the hasNext(), Next() implementation on the concrete Iterator

1 @Override

2 public Object next() {

3 ItemComponent menultem = items.get(position);
position = position + 1;

5 return menultem;

o}

8 @Override
9 public boolean hasNext() {

0 if (position >= items.size() || items.get(position) == null) {
11 return false ;

12 } else {

return true;

Listing 4: Iterator Design Pattern Concrete implementation sample Code

4.4 Observer Design Pattern

Observer Design Pattern categorized as behavioral design pattern defines a one to many relationship
between objects, that’s when an object (Subject) changes its state, all dependent objects (Observers)
are notified and updated automatically.

in the figure below, the observer design patterns in our project consist of tow main interfaces as listed:

e IObserver interface that contains a prototype for update() method, that gets called when the
Subject (Observee) state changed.

e Concrete Observer class that implements the IObserver interface, which is in our project the
customer, it override the update() method. Each observer registers with a concrete subject
(concrete Store Classes in our project) to receives updates includes the new item added Name
and Price.

e ISubject interface, which is used by other objects (observers) to register as observers, or to
be removed from observers list, when an object is resisted as an observers, it is then notified
automatically.

e Concert Subjects are our Concrete Stores (GameStore, BookStore, ShoeStore). The concrete
Store implements the ISubject interface, and override the methods.

All Concrete Stores are observable objects. The Customer (Concert Subject) in this projects needs
to be notified whenever a new item is added for sale in the store the customer is registered in as an
observer. Each Store Can has many observers (Customers).

1 @Override
2 public void notifyObservers() {
3 int index = items.size() — 1;
ItemComponent itm = (ItemComponent) items.get(index);
5 Iterator <IObserver> Observerlterator = observers.iterator();

<<Interface>>

ISubject

+register0bserver(observer o)

+remove0bserver(Observer o)

+notifyObserversi)

5

-name

-storeid

-items

-customers

<<Interface>>

I0bserver

a)
|
|
|
|
|
|
|

-Observers

-name

+enter()

-Stores

+exit()

+ShoppingCart()

+getCustomers()

+itemsi)

+addObserver()

GameStore BookStore

Figure 5: Observer Design Pattern Class Diagram

while (Observerlterator.hasNext()) {
Observerlterator.next() . update(itm);

}

public void ItemsForSaleAdded() {

notifyObservers() ;

}
@QOverride

public void addItem(ItemComponent itm) {

items.add(itm);

System.out.println(”New Item added: 7 + itm.getName() 4+ 7 To Store: 7 + this.getStoreName());

ItemsForSaleAdded();

Listing 5: Observer Design Pattern Sample Code

abstract class
temComponennt

-add()

-remove()
-getChild ()
-gethame
-getPrice

| eaf T Composite ltem

Compoltem

Figure 6: Composite Design Pattern Class Diagram

4.5 Composite Design Pattern

The Composite design Pattern is used to represent the item (composite item), the item ,and Com-
poltem (concrete classes), both inherits from the interface ItemComponent, the item is composed
into tree structure in which each node could be of type (item) leaf, or composite of type Compoltem.
the figure below shows the Class diagram.

e ItemComponent represents the Composite item abstract calss.

e Compoltem a concrete Item of type composite, it inherits the ItemComponent and override
it’s methods.

e (item) represents the concrete Leaf item in the tree structure (Tree Stub), it has no children,
and can not add any other items of any type.

public double getPrice() {
double total = 0;
Iterator iterator = itemComponents.iterator();
while (iterator .hasNext()) {
ItemComponent itmComponent
= (ItemComponent) iterator.next();
total += itmComponent.getPrice();

}

return total;

Listing 6: Composite Design Pattern Sample Code

	Introduction
	Project functional and nonfunctional Requirements
	Project Source Code Structure and Hierarchy
	Design Patterns Used
	Abstract Factory
	Singleton Design Pattern
	Iterator Design Pattern
	Observer Design Pattern
	Composite Design Pattern

